Sistem Telekomunikasi    
   
Daftar Isi
(Sebelumnya) List of RISC OS bundled applic ...List of RNA-Seq bioinformatics ... (Berikutnya)

Daftar/Tabel -- RNA structure prediction software

This list of RNA structure prediction software is a compilation of software tools and web portals used for RNA structure prediction.

Contents

Single sequence secondary structure prediction

NameDescriptionKnots
[Note 1]
LinksReferences
CentroidFoldSecondary structure prediction based on generalized centroid estimatornosourcecode webserver[1]
CentroidHomfoldSecondary structure prediction by using homologous sequence informationnosourcecode webserver[2]
Context FoldAn RNA secondary structure prediction software based on feature-rich trained scoring models.nosourcecode webserver[3]
CONTRAfoldSecondary structure prediction method based on conditional log-linear models (CLLMs), a flexible class of probabilistic models which generalize upon SCFGs by using discriminative training and feature-rich scoring.nosourcecode webserver[4]
CyloFoldSecondary structure prediction method based on placement of helices allowing complex pseudoknots.yeswebserver[5]
KineFoldFolding kinetics of RNA sequences including pseudoknots by including an implementation of the partition function for knots.yeslinuxbinary, webserver[6][7]
MfoldMFE (Minimum Free Energy) RNA structure prediction algorithm.nosourcecode, webserver[8]
PknotsA dynamic programming algorithm for optimal RNA pseudoknot prediction using the nearest neighbour energy model.yessourcecode[9]
PknotsRGA dynamic programming algorithm for the prediction of a restricted class of RNA pseudoknots.yessourcecode, webserver[10]
RNA123Secondary structure prediction via thermodynamic-based folding algorithms and novel structure-based sequence alignment specific for RNA.yeswebserver 
RNAfoldMFE RNA structure prediction algorithm. Includes an implementation of the partition function for computing basepair probabilities and circular RNA folding.nosourcecode, webserver

[8][11][12][13][14]

RNAshapesMFE RNA structure prediction based on abstract shapes. Shape abstraction retains adjacency and nesting of structural features, but disregards helix lengths, thus reduces the number of suboptimal solutions without losing significant information. Furthermore, shapes represent classes of structures for which probabilities based on Boltzmann-weighted energies can be computed.nosource & binaries, webserver[15][16]
RNAstructureA program to predict lowest free energy structures and base pair probabilities for RNA or DNA sequences. Programs are also available to predict Maximum Expected Accuracy structures and these can include pseudoknots. Structure prediction can be constrained using experimental data, including SHAPE, enzymatic cleavage, and chemical modification accessibility. Graphical user interfaces are available for Windows and for Mac OS-X/Linux. Programs are also available for use with Unix-style text interfaces. Additionally, a C++ class library is available.yessource & binaries

[17][18]

SfoldStatistical sampling of all possible structures. The sampling is weighted by partition function probabilities.nowebserver[19][20][21][22]
UNAFoldThe UNAFold software package is an integrated collection of programs that simulate folding, hybridization, and melting pathways for one or two single-stranded nucleic acid sequences.nosourcecode[23]
CrumpleCrumple is simple, cleanly written software for producing the full set of possible secondary structures for a single sequence, given optional constraints.nosourcecode[24]
Sliding Windows & AssemblySliding windows and assembly is a tool chain for folding long series of similar hairpins.nosourcecode[24]
Notes
  1. ^ Knots: Pseudoknot prediction, <yes|no>.

Single sequence tertiary structure prediction

NameDescriptionKnots
[Note 1]
LinksReferences
BARNACLEA Python library for the probabilistic sampling of RNA structures that are compatible with a given nucleotide sequence and that are RNA-like on a local length scale.yessourcecode[25]
FARNAAutomated de novo prediction of native-like RNA tertiary structures .yessourcecode[26]
iFoldRNAthree-dimensional RNA structure prediction and foldingyeswebserver[27]
MC-Fold MC-Sym PipelineThermodynamics and Nucleotide cyclic motifs for RNA structure prediction algorithm. 2D and 3D structures.yessourcecode, webserver[28]
NASTCoarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters ?sourcecode[29]
RNA123An integrated platform for de novo and homology modeling of RNA 3D structures, where coordinate file input, sequence editing, sequence alignment, structure prediction and analysis features are all accessed from a single intuitive graphical user interface.yeswebserver 
RNAComposerFully automated prediction of large RNA 3D structures.yeswebserver webserver[30]
Notes
  1. ^ Knots: Pseudoknot prediction, <yes|no>.

Comparative methods

The single sequence methods mentioned above have a difficult job detecting a small sample of reasonable secondary structures from a large space of possible structures. A good way to reduce the size of the space is to use evolutionary approaches. Structures that have been conserved by evolution are far more likely to be the functional form. The methods below use this approach.

NameDescriptionNumber of sequences
[Note 1]
Alignment
[Note 2]
Structure
[Note 3]
Knots
[Note 4]
LinkReferences
CarnacComparative analysis combined with MFE folding.anynoyesnosourcecode, webserver[31][32]
CentroidAlifoldCommon secondary structure prediction based on generalized centroid estimatoranyyesnonosourcecode webserver[33]
CentroidAlignFast and accurate multiple aligner for RNA sequencesanyyesnonosourcecode[34]
CMfinderan expectation maximization algorithm using covariance models for motif description. Uses heuristics for effective motif search, and a Bayesian framework for structure prediction combining folding energy and sequence covariation.3\le seqs \le60yesyesnosourcecode, webserver, website[35]
CONSANimplements a pinned Sankoff algorithm for simultaneous pairwise RNA alignment and consensus structure prediction.2yesyesnosourcecode[36]
Dynalignan algorithm that improves the accuracy of structure prediction by combining free energy minimization and comparative sequence analysis to find a low free energy structure common to two sequences without requiring any sequence identity.2yesyesnosourcecode[37][38][39]
FoldalignMA multiple RNA structural RNA alignment method, to a large extend based on the PMcomp program.anyyesyesnosourcecode[40]
FRUUTA pairwise RNA structural alignment tool based on the comparison of RNA trees. Considers alignments in which the compared trees can be rooted differently (with respect to the standard “external loop” corresponding roots), and/or permuted with respect to branching order.anyyesinputnosourcecode, webserver[41]
GraphClustFast RNA structural clustering method of local RNA secondary structures. Predicted clusters are refined using LocARNA and CMsearch. Due to the linear time complexity for clustering it is possible to analyse large RNA datasets.anyyesyesnosourcecode[42]
KNetFoldComputes a consensus RNA secondary structure from an RNA sequence alignment based on machine learning.anyinputyesyeslinuxbinary, webserver[43]
LARAProduce a global fold and alignment of ncRNA families using integer linear programming and Lagrangian relaxation.anyyesyesnosourcecode[44]
LocaRNALocaRNA is the successor of PMcomp with an improved time complexity. It is a variant of Sankoff's algorithm for simultaneous folding and alignment, which takes as input pre-computed base pair probability matrices from McCaskill's algorithm as produced by RNAfold -p. Thus the method can also be viewed as way to compare base pair probability matrices.anyyesyesnosourcecode, webserver[45]
MASTRA sampling approach using Markov chain Monte Carlo in a simulated annealing framework, where both structure and alignment is optimized by making small local changes. The score combines the log-likelihood of the alignment, a covariation term and the basepair probabilities.anyyesyesnosourcecode[46][47]
MultilignThis method uses multiple Dynalign calculations to find a low free energy structure common to any number of sequences. It does not require any sequence identity.anyyesyesnosourcecode[48]
Murleta multiple alignment tool for RNA sequences using iterative alignment based on Sankoff's algorithm with sharply reduced computational time and memory.anyyesyesnowebserver[49]
MXSCARNAa multiple alignment tool for RNA sequences using progressive alignment based on pairwise structural alignment algorithm of SCARNA.anyyesyesnowebserver sourcecode[50]
PARTSA method for joint prediction of alignment and common secondary structures of two RNA sequences using a probabilistic model based on pseudo free energies obtained from precomputed base pairing and alignment probabilities.2yesyesnosourcecode[51]
PfoldFolds alignments using a SCFG trained on rRNA alignments.\le40inputyesnowebserver[52][53]
PETfoldFormally integrates both the energy-based and evolution-based approaches in one model to predict the folding of multiple aligned RNA sequences by a maximum expected accuracy scoring. The structural probabilities are calculated by RNAfold and Pfold.anyinputyesnosourcecode[54]
PMcomp/PMmultiPMcomp is a variant of Sankoff's algorithm for simultaneous folding and alignment, which takes as input pre-computed base pair probability matrices from McCaskill's algorithm as produced by RNAfold -p. Thus the method can also be viewed as way to compare base pair probability matrices. PMmulti is a wrapper program that does progressive multiple alignments by repeatedly calling pmcomp2\le seqs \le6yesyesnosourcecode, webserver[55]
RNAGA Gibbs sampling method to determine a conserved structure and the structural alignment.anyyesyesnosourcecode[56]
R-COFFEEuses RNAlpfold to compute the secondary structure of the provided sequences. A modified version of T-Coffee is then used to compute the multiple sequence alignment having the best agreement with the sequences and the structures. R-Coffee can be combined with any existing sequence alignment method.anyyesyesnosourcecode, webserver[57][58]
TurboFoldThis algorithm predicts conserved structures in any number of sequences. It uses probabilistic alignment and partition functions to map conserved pairs between sequences, and then iterates the partition functions to improve structure prediction accuracyanynoyesyessourcecode[59][60]
RNA123The structure based sequence alignment (SBSA) algorithm within RNA123 utilizes a novel suboptimal version of the Needleman-Wunsch global sequence alignment method that fully accounts for secondary structure in the template and query. It also utilizes two separate substitution matrices that are optimized for RNA helices and single stranded regions. The SBSA algorithm provides >90% accurate sequence alignments even for structures as large as bacterial 23S rRNA (~2800 nts).anyyesyesyeswebserver 
RNAalifoldFolds precomputed alignments using a combination of free-energy and a covariation measures. Ships with the Vienna package.anyinputyesnohomepage[11][61]
RNAcastenumerates the near-optimal abstract shape space, and predicts as the consensus an abstract shape common to all sequences, and for each sequence, the thermodynamically best structure which has this abstract shape.anynoyesnosourcecode, webserver[62]
RNAforesterCompare and align RNA secondary structures via a "forest alignment" approach.anyyesinputnosourcecode, webserver[63][64]
RNAmineFrequent stem pattern miner from unaligned RNA sequences is a software tool to extract the structural motifs from a set of RNA sequences.anynoyesnowebserver[65]
RNASamplerA probabilistic sampling approach that combines intrasequence base pairing probabilities with intersequence base alignment probabilities. This is used to sample possible stems for each sequence and compare these stems between all pairs of sequences to predict a consensus structure for two sequences. The method is extended to predict the common structure conserved among multiple sequences by using a consistency-based score that incorporates information from all the pairwise structural alignments.anyyesyesyessourcecode[66]
SCARNAStem Candidate Aligner for RNA (Scarna) is a fast, convenient tool for structural alignment of a pair of RNA sequences. It aligns two RNA sequences and calculates the similarities of them, based on the estimated common secondary structures. It works even for pseudoknotted secondary structures.2yesyesnowebserver[67]
SimulFoldsimultaneously inferring RNA structures including pseudoknots, alignments, and trees using a Bayesian MCMC framework.anyyesyesyessourcecode[68]
Stemloca program for pairwise RNA structural alignment based on probabilistic models of RNA structure known as Pair stochastic context-free grammars.anyyesyesnosourcecode[69]
StrAlan alignment tool designed to provide multiple alignments of non-coding RNAs following a fast progressive strategy. It combines the thermodynamic base pairing information derived from RNAfold calculations in the form of base pairing probability vectors with the information of the primary sequence.\le50yesnonosourcecode, webserver[70]
TFoldA tool for predicting non-coding RNA secondary structures including pseudoknots. It takes in input an alignment of RNA sequences and returns the predicted secondary structure(s).It combines criteria of stability, conservation and covariation in order to search for stems and pseudoknots. Users can change different parameters values, set (or not) some known stems (if there are) which are taken into account by the system, choose to get several possible structures or only one, search for pseudoknots or not, etc.anyyesyesyeswebserver[71]
WARa webserver that makes it possible to simultaneously use a number of state of the art methods for performing multiple alignment and secondary structure prediction for noncoding RNA sequences.2\le seqs \le50yesyesnowebserver[72]
Xratea program for analysis of multiple sequence alignments using phylogenetic grammars, that may be viewed as a flexible generalization of the "Pfold" program.anyyesyesnosourcecode[73]
Notes
  1. ^ Number of sequences: <any|num>.
  2. ^ Alignment: predicts an alignment, <input|yes|no>.
  3. ^ Structure: predicts structure, <input|yes|no>.
  4. ^ Knots: Pseudoknot prediction, <yes|no>.

Inter molecular interactions: RNA-RNA

Many ncRNAs function by binding to other RNAs. For example, miRNAs regulate protein coding gene expression by binding to 3' UTRs, small nucleolar RNAs guide post-transcriptional modifications by binding to rRNA, U4 spliceosomal RNA and U6 spliceosomal RNA bind to each other forming part of the spliceosome and many small bacterial RNAs regulate gene expression by antisense interactions E.g. GcvB, OxyS and RyhB.

NameDescriptionIntra-molecular structureComparativeLinkReferences
GUUGleA utility for fast determination of RNA-RNA matches with perfect hybridization via A-U, C-G, and G-U base pairing.nonowebserver[74]
IntaRNAEfficient target prediction incorporating the accessibility of target sitesyesnosourcecode, webserver[75][76][77]
NUPACKComputes the full unpseudoknotted partition function of interacting strands in dilute solution. Calculates the concentrations, mfes, and base-pairing probabilities of the ordered complexes below a certain complexity. Also computes the partition function and basepairing of single strands including a class of pseudoknotted structures. Also enables design of ordered complexes.yesnoNUPACK[78]
OligoWalk/RNAstructurePredicts bimolecular secondary structures with and without intramolecular structure. Also predicts the hybridization affinity of a short nucleic acid to an RNA target.yesno[1][79]
piRNAcalculates the partition function and thermodynamics of RNA-RNA interactions. It considers all possible joint secondary structure of two interacting nucleic acids that do not contain pseudoknots, interaction pseudoknots, or zigzags.yesnolinuxbinary[80]
RNAaliduplexBased upon RNAduplex with bonuses for covarying sitesnoyessourcecode[11]
RNAcofoldworks much like RNAfold, but allows to specify two RNA sequences which are then allowed to form a dimer structure.yesnosourcecode[11][81]
RNAduplexcomputes optimal and suboptimal secondary structures for hybridization. The calculation is simplified by allowing only inter-molecular base pairs.nonosourcecode[11]
RNAhybrida tool for finding the minimum free energy hybridisation of a long and a short RNA.nonosourcecode, webserver[82][83]
RNAupcalculates the thermodynamics of RNA-RNA interactions. RNA-RNA binding is decomposed into two stages. (1) First the probability that a sequence interval (e.g. a binding site) remains unpaired is computed. (2) Then the binding energy given that the binding site is unpaired is calculated as the optimum over all possible types of bindings.yesnosourcecode[11][84]

Inter molecular interactions: MicroRNA:UTR

MicroRNAs regulate protein coding gene expression by binding to 3' UTRs, there are tools specifically designed for predicting these interactions. For an evaluation of target prediction methods on high-throughput experimental data see (Selbach et al., Nature 2008) [85] and (Alexiou et al., Bioinformatics 2009)[86]

NameDescriptionSpecies SpecificIntra-molecular structureComparativeLinkReferences
Diana-microTDIANA-microT 3.0 is an algorithm based on several parameters calculated individually for each microRNA and it combines conserved and non-conserved microRNA recognition elements into a final prediction score.human, mousenoyeswebserver[87]
MicroTarAn animal miRNA target prediction tool based on miRNA-target complementarity and thermodynamic data.nononosourcecode[88]
miTargetmicroRNA target gene prediction using a support vector machine.nononowebserver[89]
PicTarCombinatorial microRNA target predictions.8 vertebratesnoyespredictions[90]
PITAIncorporates the role of target-site accessibility, as determined by base-pairing interactions within the mRNA, in microRNA target recognition.noyesnoexecutable, webserver, predictions[91]
RNA22The first link (predictions) provides RNA22 predictions for all protein coding transcripts in human, mouse, roundworm, and fruit fly. It allows you to visualize the predictions within a cDNA map and also find transcripts where multiple miR's of interest target. The second web-site link (custom) first finds putative microRNA binding sites in the sequence of interest, then identifies the targeted microRNA.nononopredictions custom[92]
RNAhybrida tool for finding the minimum free energy hybridisation of a long and a short RNA.nononosourcecode, webserver[82][83]
SylamerSylamer is a method for finding significantly over or under-represented words in sequences according to a sorted gene list. Typically it is used to find significant enrichment or depletion of microRNA or siRNA seed sequences from microarray expression data.nononosourcecode webserver[93][94]
TAREFTAREF stands for TARget REFiner. It predicts microRNA targets on the basis of multiple feature information derived from the flanking regions of the predicted target sites where traditional structure prediction approach may not be successful to assess the openness. It also provides an option to use encoded pattern to refine filtering.Yesnonoserver/sourcecode[95]
p-TAREFp-TAREF stands for plant TARget REFiner. It identifies plant microRNA targets on the basis of multiple feature information derived from the flanking regions of the predicted target sites where traditional structure prediction approach may not be successful to assess the openness. It also provides an option to use encoded pattern to refine filtering. It first time employed power of machine learning approach with scoring scheme through Support Vector Regression(SVR) while considering structural and alignment aspects of targeting in plants with plant specific models. p-TAREF has been implemented in concurrent architecture in server as well as standalone form, making it one of the very few available target identification tools able to run concurrently on simple desktops while performing huge transcriptome level analysis accurately and fast. Besides this, it also provides an option to experimentally validate the predicted targets, on the spot, using expression data, which has been integrated in its back-end, to draw confidence on prediction along with SVR score.p-TAREF performance benchmarking has been done extensively through different tests and compared with other plant miRNA target identification tools. p-TAREF was found better performing.Yesnonoserver/standalone 
TargetScanPredicts biological targets of miRNAs by searching for the presence of conserved 8mer and 7mer sites that match the seed region of each miRNA. Predictions are ranked using site number, site type, and site context, which includes factors that influence target-site accessibility.vertebrates, flies, nematodesevaluated indirectlyyessourcecode, webserver[96][97][98][99]

ncRNA gene prediction software

NameDescriptionNumber of sequences
[Note 1]
Alignment
[Note 2]
Structure
[Note 3]
LinkReferences
AlifoldzAssessing a multiple sequence alignment for the existence of an unusual stable and conserved RNA secondary structure.anyinputyessourcecode[100]
EvoFolda comparative method for identifying functional RNA structures in multiple-sequence alignments. It is based on a probabilistic model-construction called a phylo-SCFG and exploits the characteristic differences of the substitution process in stem-pairing and unpaired regions to make its predictions.anyinputyeslinuxbinary[101]
MSARiheuristic search for statistically significant conservation of RNA secondary structure in deep multiple sequence alignments.anyinputyessourcecode[102]
QRNAThis is the code from Elena Rivas that accompanies a submitted manuscript "Noncoding RNA gene detection using camparative sequence analysis". QRNA uses comparative genome sequence analysis to detect conserved RNA secondary structures, including both ncRNA genes and cis-regulatory RNA structures.2inputyessourcecode[103][104]
RNAzprogram for predicting structurally conserved and thermodynamic stable RNA secondary structures in multiple sequence alignments. It can be used in genome wide screens to detect functional RNA structures, as found in noncoding RNAs and cis-acting regulatory elements of mRNAs.anyinputyessourcecode, webserver RNAz 2[105][106][107]
Xratea program for analysis of multiple sequence alignments using phylogenetic grammars, that may be viewed as a flexible generalization of the "Evofold" program.anyyesyessourcecode[73]
Notes
  1. ^ Number of sequences: <any|num>.
  2. ^ Alignment: predicts an alignment, <input|yes|no>.
  3. ^ Structure: predicts structure, <input|yes|no>.

Family specific gene prediction software

NameDescriptionFamilyLinkReferences
ARAGORNARAGORN detects tRNA and tmRNA in nucleotide sequences.tRNA tmRNAwebserver source[108]
miRNAminerGiven a search query, candidate homologs are identified using BLAST search and then tested for their known miRNA properties, such as secondary structure, energy, alignment and conservation, in order to assess their fidelity.MicroRNAwebserver[109]
RISCbinderPrediction of guide strand of microRNAs.Mature miRNAwebserver[110]
RNAmicroA SVM-based approach that, in conjunction with a non-stringent filter for consensus secondary structures, is capable of recognizing microRNA precursors in multiple sequence alignments.MicroRNAhomepage[111]
RNAmmerRNAmmer uses HMMER to annotate rRNA genes in genome sequences. Profiles were built using alignments from the European ribosomal RNA database[112] and the 5S Ribosomal RNA Database.[113]rRNAwebserver source[114]
SnoReportUses a combination of RNA secondary structure prediction and machine learning that is designed to recognize the two major classes of snoRNAs, box C/D and box H/ACA snoRNAs, among ncRNA candidate sequences.snoRNAsourcecode[115]
SnoScanSearch for C/D box methylation guide snoRNA genes in a genomic sequence.C/D box snoRNAsourcecode, webserver[116][117]
snoSeekersnoSeeker includes two snoRNA-searching programs, CDseeker and ACAseeker, specific to the detection of C/D snoRNAs and H/ACA snoRNAs, respectively. snoSeeker has been used to scan four human–mammal whole-genome alignment (WGA) sequences and identified 54 novel candidates including 26 orphan candidates as well as 266 known snoRNA genes.snoRNAwebserver,stand-alone[118]
tRNAscan-SEa program for the detection of transfer RNA genes in genomic sequence.tRNAsourcecode, webserver[117][119]
miRNAFoldA fast ab initio software for searching for microRNA precursors in genomes.microRNAwebserver[120]

RNA homology search software

NameDescriptionLinkReferences
ERPIN"Easy RNA Profile IdentificatioN" is an RNA motif search program reads a sequence alignement and secondary structure, and automatically infers a statistical "secondary structure profile" (SSP). An original Dynamic Programming algorithm then matches this SSP onto any target database, finding solutions and their associated scores.sourcecode webserver[121][122][123]
Infernal"INFERence of RNA ALignment" is for searching DNA sequence databases for RNA structure and sequence similarities. It is an implementation of a special case of profile stochastic context-free grammars called covariance models (CMs).sourcecode[124][125][126]
PHMMTS"pair hidden Markov models on tree structures" is an extension of pair hidden Markov models defined on alignments of trees.sourcecode, webserver[127]
RaveNnAA slow and rigorous or fast and heuristic sequence-based filter for covariance models.sourcecode[128][129]
RSEARCHTakes a single RNA sequence with its secondary structure and utilizes a local alignment algorithm to search a database for homologous RNAs.sourcecode[130]
StructatorUltra fast software for searching for RNA structural motifs employing an innovative index-based bidirectional matching algorithm combined with a new fast fragment chaining strategy.sourcecode[131]

Benchmarks

NameDescriptionStructure[Note 1]Alignment[Note 2]PhylogenyLinksReferences
BRalibase IA comprehensive comparison of comparative RNA structure prediction approachesyesnonodata[132]
BRalibase IIA benchmark of multiple sequence alignment programs upon structural RNAsnoyesnodata[133]
BRalibase 2.1A benchmark of multiple sequence alignment programs upon structural RNAsnoyesnodata[134]
BRalibase IIIA critical assessment of the performance of homology search methods on noncoding RNAnoyesnodata[135]
CompaRNAAn independent comparison of single-sequence RNA secondary structure prediction programsyesnonoCompaRNA 
Notes
  1. ^ Structure: benchmarks structure prediction tools <yes|no>.
  2. ^ Alignment: benchmarks alignment tools <yes|no>.

Alignment viewers/editors

NameDescriptionAlignment[Note 1]Structure[Note 2]LinkReferences
4saleA tool for Synchronous RNA Sequence and Secondary Structure Alignment and Editingyesyessourcecode[136]
Colorstock, SScolor, RatonColorstock, a command-line script using ANSI terminal color; SScolor, a Perl script that generates static HTML pages; and Raton, an AJAX web application generating dynamic HTML. Each tool can be used to color RNA alignments by secondary structure and to visually highlight compensatory mutations in stems.yesyessourcecode[137]
Integrated Genome Browser (IGB)a multiple alignment viewer written in Java.yesnosourcecode[138]
Jalviewa multiple alignment editor written in Java.yesnosourcecode[139][140]
RALEEa major mode for the Emacs text editor. It provides functionality to aid the viewing and editing of multiple sequence alignments of structured RNAs.yesyessourcecode[141]
SARSEA graphical sequence editor for working with structural alignments of RNA.yesyessourcecode[142]
Notes
  1. ^ Alignment: view and edit an alignment, <yes|no>.
  2. ^ Structure: view and edit structure, <yes|no>.

Inverse Folding/RNA design

NameDescriptionLinkReferences
ETeRNAAn RNA folding game that challenges players to come up with sequences that fold into a target RNA structure. The best sequences for a given puzzle are synthesized and their structures are probed through chemical mapping. The sequences are then scored by the data's agreement to the target structure and feedback is provided to the players.home page--
NUPACKAlthough NUPACK can be used to get useful statistics and properties of an RNA's structure as mentioned above, it's main goal is design of new sequences that fold into a desired structure.home page[78]
RNAInverseThe ViennaRNA package provides RNAInverse, an algorithm for designing sequences with desired structure.help page[143]

Secondary structure viewers/editors

NameDescriptionLinkReferences
PseudoViewerAutomatically visualizing RNA pseudoknot structures as planar graphs.webapp/binary[144][145][146][147]
RNA Moviesbrowse sequential paths through RNA secondary structure landscapessourcecode[148][149]
RNA2D3Da program for generating, viewing, and comparing 3-dimensional models of RNAbinary[150]
RNAstructureRNAstructure has a viewer for structures in ct files. It can also compare predicted structures using the circleplot program. Structures can be output as postscript files.sourcecode[151]
RNAView/RnamlViewUse RNAView to automatically identify and classify the types of base pairs that are formed in nucleic acid structures. Use RnamlView to arrange RNA structures.sourcecode[152]
RILogoVisualizes the intra-/intermolecular base pairing of two interacting RNAs with sequence logos in a planar graph.web server / sourcecode[153]
VARNAA tool for the automated drawing, visualization and annotation of the secondary structure of RNA, initially designed as a companion software for web servers and databaseswebapp/sourcecode[154]

See also

References

  1. ^ Michiaki Hamada, Hisanori Kiryu, Kengo Sato, Toutai Mituyama, Kiyoshi Asai (2009). "Predictions of RNA secondary structure using generalized centroid estimators". Bioinformatics 25 (4): 465–473. doi:10.1093/bioinformatics/btn601. PMID 19095700.
  2. ^ Michiaki Hamada, Hisanori Kiryu, Kengo Sato, Toutai Mituyama, Kiyoshi Asai (2009). "Predictions of RNA secondary structure by combining homologous sequence information". Bioinformatics 25 (12): i330 - i3388. doi:10.1093/bioinformatics/btp228. PMID 19478007.
  3. ^ Shay Zakov, Yoav Goldberg, Michael Elhadad, Michal Ziv-Ukelson (2011). "Rich parameterization improves RNA structure prediction". Journal of Computational Biology 18 (11): 1525–1542. doi:10.1089/cmb.2011.0184. PMID 22035327.
  4. ^ Do CB, Woods DA, Batzoglou S (2006). "CONTRAfold: RNA secondary structure prediction without physics-based models". Bioinformatics 22 (14): e90–8. doi:10.1093/bioinformatics/btl246. PMID 16873527.
  5. ^ Bindewald E, Kluth T, Shapiro BA (2010). "CyloFold: secondary structure prediction including pseudoknots". Nucleic Acids Research Suppl (W): 368–72. doi:10.1093/nar/gkq432. PMC 2896150. PMID 20501603. //www.ncbi.nlm.nih.gov/pmc/articles/P MC2896150/.
  6. ^ Xayaphoummine A, Bucher T, Isambert H (2005). "Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots". Nucleic Acids Res. 33 (Web Server issue): W605–10. doi:10.1093/nar/gki447. PMC 1160208. PMID 15980546. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1160208/.
  7. ^ Xayaphoummine A, Bucher T, Thalmann F, Isambert H (2003). "Prediction and statistics of pseudoknots in RNA structures using exactly clustered stochastic simulations". Proc. Natl. Acad. Sci. U.S.A. 100 (26): 15310–5. arXiv:physics/0309117. Bibcode 2003PNAS..10015310X. doi:10.1073/pnas.2536430100. PMC 307563. PMID 14676318. //www.ncbi.nlm.nih.gov/pmc/articles/P MC307563/.
  8. ^ a b Zuker M, Stiegler P (1981). "Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information". Nucleic Acids Res. 9 (1): 133–48. doi:10.1093/nar/9.1.133. PMC 326673. PMID 6163133. //www.ncbi.nlm.nih.gov/pmc/articles/P MC326673/.
  9. ^ Rivas E, Eddy SR (1999). "A dynamic programming algorithm for RNA structure prediction including pseudoknots". J. Mol. Biol. 285 (5): 2053–68. doi:10.1006/jmbi.1998.2436. PMID 9925784.
  10. ^ Reeder J, Steffen P, Giegerich R (2007). "pknotsRG: RNA pseudoknot folding including near-optimal structures and sliding windows". Nucleic Acids Res. 35 (Web Server issue): W320–4. doi:10.1093/nar/gkm258. PMC 1933184. PMID 17478505. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1933184/.
  11. ^ a b c d e f I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994). "Fast Folding and Perbandingan -- RNA Secondary Structures.". Monatshefte f. Chemie 125 (2): 167–188. doi:10.1007/BF00818163.
  12. ^ McCaskill JS (1990). "The equilibrium partition function and base pair binding probabilities for RNA secondary structure". Biopolymers 29 (6-7): 1105–19. doi:10.1002/bip.360290621. PMID 1695107.
  13. ^ Hofacker IL, Stadler PF (2006). "Memory efficient folding algorithms for circular RNA secondary structures". Bioinformatics 22 (10): 1172–6. doi:10.1093/bioinformatics/btl023. PMID 16452114.
  14. ^ Bompfünewerer AF, Backofen R, Bernhart SH, et al. (2008). "Variations on RNA folding and alignment: lessons from Benasque". J Math Biol 56 (1-2): 129–144. doi:10.1007/s00285-007-0107-5. PMID 17611759.
  15. ^ R. Giegerich, B.Voß, M. Rehmsmeier (2004). "Abstract shapes of RNA.". Nucleic Acids Res. 32 (16): 4843–4851. doi:10.1093/nar/gkh779. PMC 519098. PMID 15371549. //www.ncbi.nlm.nih.gov/pmc/articles/P MC519098/.
  16. ^ B. Voß, R. Giegerich, M. Rehmsmeier (2006). "Complete probabilistic analysis of RNA shapes.". BMC Biology 4: 5. doi:10.1186/1741-7007-4-5. PMC 1479382. PMID 16480488. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1479382/.
  17. ^ D.H. Mathews, M.D. Disney, J. L. Childs, S.J. Schroeder, M. Zuker, D.H. Turner (2004). "Incorporating chemical modification constraints into a dynamic programming algorothm for prediction of RNA secondary structure.". Proceedings of the National Academy of Sciences, USA 101 (19): 7287–7292. Bibcode 2004PNAS..101.7287M. doi:10.1073/pnas.0401799101. PMC 409911. PMID 15123812. //www.ncbi.nlm.nih.gov/pmc/articles/P MC409911/.
  18. ^ D.H. Mathews (2004). "Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization.". RNA 10 (8): 1178–1190. doi:10.1261/rna.7650904. PMC 1370608. PMID 15272118. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1370608/.
  19. ^ Ding Y, Lawrence CE (2003). "A statistical sampling algorithm for RNA secondary structure prediction". Nucleic Acids Res. 31 (24): 7280–301. doi:10.1093/nar/gkg938. PMC 297010. PMID 14654704. //www.ncbi.nlm.nih.gov/pmc/articles/P MC297010/.
  20. ^ Ding Y, Chan CY, Lawrence CE (2004). "Sfold web server for statistical folding and rational design of nucleic acids". Nucleic Acids Res. 32 (Web Server issue): W135–41. doi:10.1093/nar/gkh449. PMC 441587. PMID 15215366. //www.ncbi.nlm.nih.gov/pmc/articles/P MC441587/.
  21. ^ Ding Y, Chan CY, Lawrence CE (2005). "RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble". RNA 11 (8): 1157–66. doi:10.1261/rna.2500605. PMC 1370799. PMID 16043502. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1370799/.
  22. ^ Chan CY, Lawrence CE, Ding Y (2005). "Structure clustering features on the Sfold Web server". Bioinformatics 21 (20): 3926–8. doi:10.1093/bioinformatics/bti632. PMID 16109749.
  23. ^ Markham NR, Zuker M (2008). "UNAFold: software for nucleic acid folding and hybridization.". Methods Mol Biol 453: 3–31. doi:10.1007/978-1-60327-429-6_1. PMID 18712296.
  24. ^ a b Schroeder S, Bleckley S, Stone JW (2011). "Ensemble of secondary structures for encapsidated satellite tobacco mosaic virus RNA consistent with chemical probing and crystallography constraints.". Biophysical Journal 101 (1): 167–175. Bibcode 2011BpJ...101..167S. doi:10.1016/j.bpj.2011.05.053. PMID 21723827.
  25. ^ Frellsen J, Moltke I, Thiim M, Mardia KV, Ferkinghoff-Borg J, Hamelryck T (2009). Gardner, Paul. ed. "A probabilistic model of RNA conformational space.". PLoS Comput Biol 5 (6): e1000406. doi:10.1371/journal.pcbi.1000406. PMC 2691987. PMID 19543381. //www.ncbi.nlm.nih.gov/pmc/articles/P MC2691987/.
  26. ^ Das R, Baker D (September 2007). "Automated de novo prediction of native-like RNA tertiary structures". Proc. Natl. Acad. Sci. U.S.A. 104 (37): 14664–9. Bibcode 2007PNAS..10414664D. doi:10.1073/pnas.0703836104. PMC 1955458. PMID 17726102. http://www.pnas.org/cgi/pmidlookup?vi ew=long&pmid=17726102.
  27. ^ Sharma S, Ding F, Dokholyan NV (September 2008). "iFoldRNA: three-dimensional RNA structure prediction and folding". Bioinformatics 24 (17): 1951–2. doi:10.1093/bioinformatics/btn328. PMC 2559968. PMID 18579566. http://bioinformatics.oxfordjournals. org/cgi/pmidlookup?view=long&pmid =18579566.
  28. ^ Parisien M, Major F (2008). "The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data". Nature 452 (1): 51–55. Bibcode 2008Natur.452...51P. doi:10.1038/nature06684. PMID 18322526.
  29. ^ Jonikas MA, Radmer RJ, Laederach A, et al. (February 2009). "Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters". RNA 15 (2): 189–99. doi:10.1261/rna.1270809. PMC 2648710. PMID 19144906. http://rnajournal.cshlp.org/cgi/pmidl ookup?view=long&pmid=19144906.
  30. ^ Popenda M, Szachniuk M, Antczak M, Purzycka KJ, Lukasiak P, Bartol N, Blazewicz J, Adamiak RW (2012). "Automated 3D structure composition for large RNAs". Nucleic Acids Res. 40 (14): 1–12. doi:10.1093/nar/gks339. PMC 3413140. PMID 22539264. //www.ncbi.nlm.nih.gov/pmc/articles/P MC3413140/.
  31. ^ Perriquet O, Touzet H, Dauchet M. (2003). "Finding the common structure shared by two homologous RNAs.". Bioinformatics. 19 (1): 108–16. doi:10.1093/bioinformatics/19.1.108. PMID 12499300.
  32. ^ Touzet H, Perriquet O. (2004 Jul 1;). "CARNAC: folding families of related RNAs.". Nucleic Acids Res.. 32 (Web Server issue) (Web Server issue): W142–5.. doi:10.1093/nar/gkh415. PMC 441553. PMID 15215367. //www.ncbi.nlm.nih.gov/pmc/articles/P MC441553/.
  33. ^ Michiaki Hamada, Kengo Sato, Kiyoshi Asai (2011). "Improving the accuracy of predicting secondary structure for aligned RNA sequences". Nucleic Acids Res. 39 (2): 393–402. doi:10.1093/nar/gkq792. PMID 20843778.
  34. ^ Michiaki Hamada, Kengo Sato, Hisanori Kiryu, Toutai Mituyama, Kiyoshi Asai (2009). "CentroidAlign: fast and accurate aligner for structured RNAs by maximizing expected sum-of-pairs score". Bioinformatics 25 (24): 3236–43. doi:10.1093/bioinformatics/btp580. PMID 19808876.
  35. ^ Yao Z, Weinberg Z, Ruzzo WL (2006). "CMfinder--a covariance model based RNA motif finding algorithm". Bioinformatics 22 (4): 445–52. doi:10.1093/bioinformatics/btk008. PMID 16357030.
  36. ^ Dowell RD, Eddy SR (2006). "Efficient pairwise RNA structure prediction and alignment using sequence alignment constraints". BMC Bioinformatics 7: 400. doi:10.1186/1471-2105-7-400. PMC 1579236. PMID 16952317. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1579236/.
  37. ^ Mathews DH, Turner DH (2002). "Dynalign: an algorithm for finding the secondary structure common to two RNA sequences". J. Mol. Biol. 317 (2): 191–203. doi:10.1006/jmbi.2001.5351. PMID 11902836.
  38. ^ Mathews DH (2005). "Predicting a set of minimal free energy RNA secondary structures common to two sequences". Bioinformatics 21 (10): 2246–53. doi:10.1093/bioinformatics/bti349. PMID 15731207.
  39. ^ Harmanci AO, Sharma G, Mathews DH (2007). "Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign". BMC Bioinformatics 8: 130. doi:10.1186/1471-2105-8-130. PMC 1868766. PMID 17445273. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1868766/.
  40. ^ Torarinsson E, Havgaard JH, Gorodkin J (2007). "Multiple structural alignment and clustering of RNA sequences". Bioinformatics 23 (8): 926–32. doi:10.1093/bioinformatics/btm049. PMID 17324941.
  41. ^ Milo Nimrod, Zakov Shay, Katzenelson Erez, Bachmat Eitan, Dinitz Yefim, Ziv-Ukelson Michal (2012). "RNA Tree Comparisons via Unrooted Unordered Alignments". Algorithms in Bioinformatics 7534: 135-148. doi:10.1007/978-3-642-33122-0_11.
  42. ^ Heyne S, Costa F, Rose D, Backofen R (2012). "GraphClust: alignment-free structural clustering of local RNA secondary structures". Bioinformatics 28 (12): i224-i232. doi:10.1093/bioinformatics/bts224. PMID 22689765.
  43. ^ Bindewald E, Shapiro BA (2006). "RNA secondary structure prediction from sequence alignments using a network of k-nearest neighbor classifiers". RNA 12 (3): 342–52. doi:10.1261/rna.2164906. PMC 1383574. PMID 16495232. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1383574/.
  44. ^ Bauer M, Klau GW, Reinert K. (2007). "Accurate multiple sequence-structure alignment of RNA sequences using combinatorial optimization.". BMC Bioinformatics. 8: 271. doi:10.1186/1471-2105-8-271. PMC 1955456. PMID 17662141. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1955456/.
  45. ^ Will S, Reiche K, Hofacker IL, Stadler PF, Backofen R (2007). "Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering.". PLoS Comput Biol. 3 (4): e65. Bibcode 2007PLSCB...3...65W. doi:10.1371/journal.pcbi.0030065. PMC 1851984. PMID 17432929. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1851984/.
  46. ^ Lindgreen S, Gardner PP, Krogh A (2006). "Measuring covariation in RNA alignments: physical realism improves information measures". Bioinformatics 22 (24): 2988–95. doi:10.1093/bioinformatics/btl514. PMID 17038338.
  47. ^ Lindgreen S, Gardner PP, Krogh A (2007). "MASTR: multiple alignment and structure prediction of non-coding RNAs using simulated annealing". Bioinformatics 23 (24): 3304–11. doi:10.1093/bioinformatics/btm525. PMID 18006551.
  48. ^ Xu Z, Mathews DH (2011). "Multilign: an algorithm to predict secondary structures conserved in multiple RNA sequences". Bioinformatics 27 (5): 626–632. doi:10.1093/bioinformatics/btq726. PMID 21193521.
  49. ^ Kiryu H, Tabei Y, Kin T, Asai K (2007). "Murlet: a practical multiple alignment tool for structural RNA sequences". Bioinformatics 23 (13): 1588–98. doi:10.1093/bioinformatics/btm146. PMID 17459961.
  50. ^ Tabei Y, Kiryu H, Kin T, Asai K (2008). "A fast structural multiple alignment method for long RNA sequences". BMC Bioinformatics 33. http://www.biomedcentral.com/1471-210 5/9/33.
  51. ^ Harmanci AO, Sharma G, Mathews DH (2008). "PARTS: probabilistic alignment for RNA joinT secondary structure prediction.". Nucleic Acids Res 36 (7): 2406–17. doi:10.1093/nar/gkn043. PMC 2367733. PMID 18304945. //www.ncbi.nlm.nih.gov/pmc/articles/P MC2367733/.
  52. ^ Knudsen B, Hein J (1999). "RNA secondary structure prediction using stochastic context-free grammars and evolutionary history". Bioinformatics 15 (6): 446–54. doi:10.1093/bioinformatics/15.6.446. PMID 10383470.
  53. ^ Knudsen B, Hein J (2003). "Pfold: RNA secondary structure prediction using stochastic context-free grammars". Nucleic Acids Res. 31 (13): 3423–8. doi:10.1093/nar/gkg614. PMC 169020. PMID 12824339. //www.ncbi.nlm.nih.gov/pmc/articles/P MC169020/.
  54. ^ Seemann S E, Gorodkin J, Backofen R (2008). "Unifying evolutionary and thermodynamic information for RNA folding of multiple alignments". Nucleic Acids Res. 36 (20): 6355–62. doi:10.1093/nar/gkn544. PMC 2582601. PMID 18836192. //www.ncbi.nlm.nih.gov/pmc/articles/P MC2582601/.
  55. ^ Hofacker IL, Bernhart SH, Stadler PF (2004). "Alignment of RNA base pairing probability matrices". Bioinformatics 20 (14): 2222–7. doi:10.1093/bioinformatics/bth229. PMID 15073017.
  56. ^ Wei D, Alpert LV, Lawrence CE (2011). "RNAG: a new Gibbs sampler for predicting RNA secondary structure for unaligned sequence". Bioinformatics 27 (18): 2486–2493. doi:10.1093/bioinformatics/btr421. PMID 21788211.
  57. ^ Wilm A, Higgins DG, Notredame C (May 2008). "R-Coffee: a method for multiple alignment of non-coding RNA". Nucleic Acids Res. 36 (9): e52. doi:10.1093/nar/gkn174. PMC 2396437. PMID 18420654. http://nar.oxfordjournals.org/cgi/pmi dlookup?view=long&pmid=18420654.
  58. ^ Moretti S, Wilm A, Higgins DG, Xenarios I, Notredame C (July 2008). "R-Coffee: a web server for accurately aligning noncoding RNA sequences". Nucleic Acids Res. 36 (Web Server issue): W10–3. doi:10.1093/nar/gkn278. PMC 2447777. PMID 18483080. http://nar.oxfordjournals.org/cgi/pmi dlookup?view=long&pmid=18483080.
  59. ^ Harmanci AO, Sharma G, Mathews DH (2011). "TurboFold: iterative probabilistic estimation of secondary structures for multiple RNA sequence". BMC Bioinformatics 12: 108. doi:10.1186/1471-2105-12-108. PMC 3120699. PMID 21507242. //www.ncbi.nlm.nih.gov/pmc/articles/P MC3120699/.
  60. ^ Seetin MG, Mathews DH (2012). "TurboKnot: rapid prediction of conserved RNA secondary structures including pseudoknots". Bioinformatics 28 (6): 792–798. doi:10.1093/bioinformatics/bts044. PMID 22285566.
  61. ^ Hofacker IL, Fekete M, Stadler PF (2002). "Secondary structure prediction for aligned RNA sequences". J. Mol. Biol. 319 (5): 1059–66. doi:10.1016/S0022-2836(02)00308-X. PMID 12079347.
  62. ^ Reeder J, Giegerich R (2005). "Consensus shapes: an alternative to the Sankoff algorithm for RNA consensus structure prediction". Bioinformatics 21 (17): 3516–23. doi:10.1093/bioinformatics/bti577. PMID 16020472.
  63. ^ Höchsmann M, Töller T, Giegerich R, Kurtz S (2003). "Local similarity in RNA secondary structures". Proc IEEE Comput Soc Bioinform Conf 2: 159–68. PMID 16452790.
  64. ^ Höchsmann M, Voss B, Giegerich R (2004). "Pure multiple RNA secondary structure alignments: a progressive profile approach". IEEE/ACM Trans Comput Biol Bioinform 1 (1): 53–62. doi:10.1109/TCBB.2004.11. PMID 17048408.
  65. ^ Hamada M, Tsuda K, Kudo T, Kin T, Asai K (2006). "Mining frequent stem patterns from unaligned RNA sequences". Bioinformatics 22 (20): 2480–7. doi:10.1093/bioinformatics/btl431. PMID 16908501.
  66. ^ Xu X, Ji Y, Stormo GD (2007). "RNA Sampler: a new sampling based algorithm for common RNA secondary structure prediction and structural alignment". Bioinformatics 23 (15): 1883–91. doi:10.1093/bioinformatics/btm272. PMID 17537756.
  67. ^ Tabei Y, Tsuda K, Kin T, Asai K (2006). "SCARNA: fast and accurate structural alignment of RNA sequences by matching fixed-length stem fragments". Bioinformatics 22 (14): 1723–9. doi:10.1093/bioinformatics/btl177. PMID 16690634.
  68. ^ Meyer IM, Miklós I (2007). "SimulFold: simultaneously inferring RNA structures including pseudoknots, alignments, and trees using a Bayesian MCMC framework". PLoS Comput. Biol. 3 (8): e149. Bibcode 2007PLSCB...3..149M. doi:10.1371/journal.pcbi.0030149. PMC 1941756. PMID 17696604. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1941756/.
  69. ^ Holmes I (2005). "Accelerated probabilistic inference of RNA structure evolution". BMC Bioinformatics 6: 73. doi:10.1186/1471-2105-6-73. PMC 1090553. PMID 15790387. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1090553/.
  70. ^ Dalli D, Wilm A, Mainz I, Steger G (2006). "STRAL: progressive alignment of non-coding RNA using base pairing probability vectors in quadratic time". Bioinformatics 22 (13): 1593–9. doi:10.1093/bioinformatics/btl142. PMID 16613908.
  71. ^ Engelen S, Tahi F (2010). "Tfold: efficient in silico prediction of non-coding RNA secondary structures". Nucleic Acids Res. 7 (38): 2453–66. doi:10.1093/nar/gkp1067. PMC 2853104. PMID 20047957. //www.ncbi.nlm.nih.gov/pmc/articles/P MC2853104/.
  72. ^ Torarinsson E, Lindgreen S (2008). "WAR: Webserver for aligning structural RNAs.". Nucleic Acids Res 36 (Web Server issue): W79–84. doi:10.1093/nar/gkn275. PMC 2447782. PMID 18492721. //www.ncbi.nlm.nih.gov/pmc/articles/P MC2447782/.
  73. ^ a b Klosterman P; Uzilov, AV; Bendaña, YR; Bradley, RK; Chao, S; Kosiol, C; Goldman, N; Holmes, I (2006). "XRate: a fast prototyping, training and annotation tool for phylo-grammars". BMC Bioinformatics 7: 428. doi:10.1186/1471-2105-7-428. PMC 1622757. PMID 17018148. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1622757/.
  74. ^ Gerlach W, Giegerich R (2006). "GUUGle: a utility for fast exact matching under RNA complementary rules including G-U base pairing.". Bioinformatics 22 (6): 762–764. doi:10.1093/bioinformatics/btk041. PMID 16403789.
  75. ^ Busch A, Richter AS, Backofen R (2008). "IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions.". Bioinformatics 24 (24): 2849–56. doi:10.1093/bioinformatics/btn544. PMC 2639303. PMID 18940824. //www.ncbi.nlm.nih.gov/pmc/articles/P MC2639303/.
  76. ^ Richter AS, Schleberger C, Backofen R, Steglich C (2010). "Seed-based INTARNA prediction combined with GFP-reporter system identifies mRNA targets of the small RNA Yfr1.". Bioinformatics 26 (1): 1–5. doi:10.1093/bioinformatics/btp609. PMC 2796815. PMID 19850757. //www.ncbi.nlm.nih.gov/pmc/articles/P MC2796815/.
  77. ^ Smith C, Heyne S, Richter AS, Will S, Backofen R (2010). "Freiburg RNA Tools: a web server integrating INTARNA, EXPARNA and LOCARNA.". Nucleic Acids Res. 38 Suppl (Web Server): W373–7. doi:10.1093/nar/gkq316. PMC 2896085. PMID 20444875. //www.ncbi.nlm.nih.gov/pmc/articles/P MC2896085/.
  78. ^ a b R.M. Dirks, J.S. Bois, J.M. Schaeffer, E. Winfree, N.A. Pierce (2007). "Thermodynamic Analysis of Interacting Nucleic Acid Strands". SIAM Review 49 (1): 65–88. Bibcode 2007SIAMR..49...65D. doi:10.1137/060651100.
  79. ^ D.H. Mathews, M.E. Burkard, S.M. Freier, D.H. Turner (1999). "Predicting Oligonucleotide Affinity to RNA Targets.". RNA 5 (11): 1458–1469. doi:10.1017/S1355838299991148. PMC 1369867. PMID 10580474. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1369867/.
  80. ^ H. Chitsaz, R. Salari, S.C. Sahinalp, R. Backofen (2009). "A Partition Function Algorithm for Interacting Nucleic Acid Strands.". Bioinformatics 25 (12). doi:10.1093/bioinformatics/btp212. PMC 2687966. PMID 19478011. //www.ncbi.nlm.nih.gov/pmc/articles/P MC2687966/.
  81. ^ Bernhart SH, Tafer H, Mückstein U, Flamm C, Stadler PF, Hofacker IL (2006). "Partition function and base pairing probabilities of RNA heterodimers". Algorithms Mol Biol 1 (1): 3. doi:10.1186/1748-7188-1-3. PMC 1459172. PMID 16722605. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1459172/.
  82. ^ a b Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004). "Fast and effective prediction of microRNA/target duplexes". RNA 10 (10): 1507–17. doi:10.1261/rna.5248604. PMC 1370637. PMID 15383676. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1370637/.
  83. ^ a b Krüger J, Rehmsmeier M (2006). "RNAhybrid: microRNA target prediction easy, fast and flexible". Nucleic Acids Res. 34 (Web Server issue): W451–4. doi:10.1093/nar/gkl243. PMC 1538877. PMID 16845047. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1538877/.
  84. ^ Mückstein U, Tafer H, Hackermüller J, Bernhart SH, Stadler PF, Hofacker IL (2006). "Thermodynamics of RNA-RNA binding". Bioinformatics 22 (10): 1177–82. doi:10.1093/bioinformatics/btl024. PMID 16446276.
  85. ^ Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008). "Widespread changes in protein synthesis induced by microRNAs.". Nature 455 (7209): 44–5. Bibcode 2008Natur.455...58S. doi:10.1038/nature07228. PMID 18668040.
  86. ^ Alexiou P, Maragkakis M, Papadopoulos GL, Reczko M, Hatzigeorgiou AG (2009). "Lost in translation: an assessment and perspective for computational microRNA target identification.". Bioinformatics 25 (23): 3049–55. doi:10.1093/bioinformatics/btp565. PMID 19789267.
  87. ^ Maragkakis M, Alexiou P, Papadopoulos GL, Reczko M, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, Simossis VA, Sethupathy P, Vergoulis T, Koziris N, Sellis T, Tsanakas P, Hatzigeorgiou AG (2009). "Accurate microRNA target prediction correlates with protein repression levels.". BMC Bioinformatics 10: 295. doi:10.1186/1471-2105-10-295. PMC 2752464. PMID 19765283. //www.ncbi.nlm.nih.gov/pmc/articles/P MC2752464/.
  88. ^ Thadani R, Tammi MT (2006). "MicroTar: predicting microRNA targets from RNA duplexes.". BMC Bioinformatics. 7 Suppl 5: S20. doi:10.1186/1471-2105-7-S5-S20. PMC 1764477. PMID 17254305. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1764477/.
  89. ^ Kim SK, Nam JW, Rhee JK, Lee WJ, Zhang BT (2006). "miTarget: microRNA target gene prediction using a support vector machine.". BMC Bioinformatics 7: 411. doi:10.1186/1471-2105-7-411. PMC 1594580. PMID 16978421. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1594580/.
  90. ^ Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005). "Combinatorial microRNA target predictions.". Nat Genet 37 (5): 495–500. doi:10.1038/ng1536. PMID 15806104.
  91. ^ Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007). "The role of site accessibility in microRNA target recognition.". Nat Genet 39 (10): 1278–84. doi:10.1038/ng2135. PMID 17893677.
  92. ^ Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I (2006). "A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes.". Cell 126 (6): 1203–17. doi:10.1016/j.cell.2006.07.031. PMID 16990141.
  93. ^ van Dongen S, Abreu-Goodger C, Enright AJ (2008). "Detecting microRNA binding and siRNA off-target effects from expression data.". Nat Methods 5 (12): 1023–5. doi:10.1038/nmeth.1267. PMC 2635553. PMID 18978784. //www.ncbi.nlm.nih.gov/pmc/articles/P MC2635553/.
  94. ^ Bartonicek N, Enright AJ (2010). "SylArray: A web-server for automated detection of miRNA effects from expression data.". Bioinformatics 26 (22): 2900–1. doi:10.1093/bioinformatics/btq545. PMID 20871108.
  95. ^ R. Heikham and R. Shankar (2010). "Flanking region sequence information to refine microRNA target predictions.". Journal of Biosciences 35 (1): 105–18. doi:10.1007/s12038-010-0013-7. PMID 20413915.
  96. ^ Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003). "Prediction of mammalian microRNA targets.". Cell 115 (7): 787–98. doi:10.1016/S0092-8674(03)01018-3. PMID 14697198.
  97. ^ Lewis BP, Burge CB, Bartel DP (2005). "Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets.". Cell 120 (1): 15–20. doi:10.1016/j.cell.2004.12.035. PMID 15652477.
  98. ^ Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007). "MicroRNA targeting specificity in mammals: determinants beyond seed pairing.". Mol Cell 27 (1): 91–105. doi:10.1016/j.molcel.2007.06.017. PMID 17612493.
  99. ^ Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP (2011). "Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs.". Nat Struct Mol Biol. 18 (10): 1139–1146. doi:10.1038/nsmb.2115. PMC 3190056. PMID 21909094. //www.ncbi.nlm.nih.gov/pmc/articles/P MC3190056/.
  100. ^ Washietl S, Hofacker IL (2004). "Consensus folding of aligned sequences as a new measure for the detection of functional RNAs by comparative genomics". J. Mol. Biol. 342 (1): 19–30. doi:10.1016/j.jmb.2004.07.018. PMID 15313604.
  101. ^ Pedersen JS, Bejerano G, Siepel A, et al. (2006). "Identification and classification of conserved RNA secondary structures in the human genome". PLoS Comput. Biol. 2 (4): e33. Bibcode 2006PLSCB...2...33P. doi:10.1371/journal.pcbi.0020033. PMC 1440920. PMID 16628248. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1440920/.
  102. ^ Coventry A, Kleitman DJ, Berger BA (2004). "MSARI: Multiple sequence alignments for statistical detection of RNA secondary structure". PNAS 101 (33): 12102–12107. Bibcode 2004PNAS..10112102C. doi:10.1073/pnas.0404193101. PMC 514400. PMID 15304649. //www.ncbi.nlm.nih.gov/pmc/articles/P MC514400/.
  103. ^ Rivas E, Eddy SR (2001). "Noncoding RNA gene detection using comparative sequence analysis". BMC Bioinformatics 2: 8. doi:10.1186/1471-2105-2-8. PMC 64605. PMID 11801179. //www.ncbi.nlm.nih.gov/pmc/articles/P MC64605/.
  104. ^ Rivas E, Klein RJ, Jones TA, Eddy SR (2001). "Computational identification of noncoding RNAs in E. coli by comparative genomics". Curr. Biol. 11 (17): 1369–73. doi:10.1016/S0960-9822(01)00401-8. PMID 11553332.
  105. ^ Washietl S, Hofacker IL, Stadler PF (2005). "Fast and reliable prediction of noncoding RNAs". Proc. Natl. Acad. Sci. U.S.A. 102 (7): 2454–9. Bibcode 2005PNAS..102.2454W. doi:10.1073/pnas.0409169102. PMC 548974. PMID 15665081. //www.ncbi.nlm.nih.gov/pmc/articles/P MC548974/.
  106. ^ Gruber AR, Neuböck R, Hofacker IL, Washietl S (2007). "The RNAz web server: prediction of thermodynamically stable and evolutionarily conserved RNA structures". Nucleic Acids Res. 35 (Web Server issue): W335–8. doi:10.1093/nar/gkm222. PMC 1933143. PMID 17452347. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1933143/.
  107. ^ Washietl S (2007). "Prediction of Structural Noncoding RNAs With RNAz". Methods Mol. Biol. 395: 503–26. doi:10.1007/978-1-59745-514-5_32. PMID 17993695.
  108. ^ Laslett D, Canback B (2004). "ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences.". Nucl. Acids Res. 32 (1): 39. doi:10.1093/nar/gkh152. PMC 373265. PMID 14704338. //www.ncbi.nlm.nih.gov/pmc/articles/P MC373265/.
  109. ^ Artzi S, Kiezun A, Shomron N (2008). "miRNAminer: a tool for homologous microRNA gene search.". BMC Bioinformatics 9: 39. doi:10.1186/1471-2105-9-39. PMC 2258288. PMID 18215311. //www.ncbi.nlm.nih.gov/pmc/articles/P MC2258288/.
  110. ^ Ahmed F, Ansari HR and Raghava GPS (2009). "Prediction of guide strand of microRNAs from its sequence and secondary structure". BMC Bioinformatics. http://www.biomedcentral.com/1471-210 5/10/105.
  111. ^ Hertel J, Stadler PF (2006). "Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data.". Bioinformatics 22 (14): e197–202. doi:10.1093/bioinformatics/btl257. PMID 16873472.
  112. ^ Wuyts J, Perrière G, Van De Peer Y (2004). "The European ribosomal RNA database.". Nucleic Acids Res 32 (Database issue): D101–3. doi:10.1093/nar/gkh065. PMC 308799. PMID 14681368. //www.ncbi.nlm.nih.gov/pmc/articles/P MC308799/.
  113. ^ Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J (2002). "5S Ribosomal RNA Database.". Nucleic Acids Res 30 (1): 176–8. doi:10.1093/nar/30.1.176. PMC 99124. PMID 11752286. //www.ncbi.nlm.nih.gov/pmc/articles/P MC99124/.
  114. ^ Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW (2007). "RNAmmer: consistent and rapid annotation of ribosomal RNA genes.". Nucleic Acids Res 35 (9): 3100–8. doi:10.1093/nar/gkm160. PMC 1888812. PMID 17452365. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1888812/.
  115. ^ Hertel J, Hofacker IL, Stadler PF (2008). "SnoReport: computational identification of snoRNAs with unknown targets.". Bioinformatics 24 (2): 158–64. doi:10.1093/bioinformatics/btm464. PMID 17895272.
  116. ^ Lowe, T. M.; Eddy, S. R. (February 1999). "A Computational Screen for Methylation Guide snoRNAs in Yeast". Science 283 (5405): 1168–1171. Bibcode 1999Sci...283.1168L. doi:10.1126/science.283.5405.1168. PMID 10024243. edit
  117. ^ a b Schattner P, Brooks AN, Lowe TM (2005). "The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs.". Nucleic Acids Res 33 (Web Server issue): W686–9. doi:10.1093/nar/gki366. PMC 1160127. PMID 15980563. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1160127/.
  118. ^ Yang JH, Zhang XC, Huang ZP, Zhou H, Huang MB, Zhang S, Chen YQ, Qu LH. (2006). "snoSeeker: an advanced computational package for screening of guide and orphan snoRNA genes in the human genome.". Nucleic Acids Res. 34 (18): 5112–5123. doi:10.1093/nar/gkl672. PMC 1636440. PMID 16990247. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1636440/.
  119. ^ Lowe TM, Eddy SR (1997). "tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence.". Nucleic Acids Res 25 (5): 955–64. doi:10.1093/nar/25.5.955. PMC 146525. PMID 9023104. //www.ncbi.nlm.nih.gov/pmc/articles/P MC146525/.
  120. ^ Tempel S, Tahi F (2012). "A fast ab-initio method for predicting miRNA precursors in genomes.". Nucleic Acids Res. 40 (11): 955–64. doi:10.1093/nar/gks146. PMC 3367186. PMID 22362754. //www.ncbi.nlm.nih.gov/pmc/articles/P MC3367186/.
  121. ^ Gautheret D, Lambert A (2001). "Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles.". J Mol Biol 313 (5): 1003–11. doi:10.1006/jmbi.2001.5102. PMID 11700055.
  122. ^ Lambert A, Fontaine JF, Legendre M, Leclerc F, Permal E, Major F, Putzer H, Delfour O, Michot B, Gautheret D (2004). "The ERPIN server: an interface to profile-based RNA motif identification.". Nucleic Acids Res 32 (Web Server issue): W160–5. doi:10.1093/nar/gkh418. PMC 441556. PMID 15215371. //www.ncbi.nlm.nih.gov/pmc/articles/P MC441556/.
  123. ^ Lambert A, Legendre M, Fontaine JF, Gautheret D (2005). "Computing expectation values for RNA motifs using discrete convolutions.". BMC Bioinformatics 6: 118. doi:10.1186/1471-2105-6-118. PMC 1168889. PMID 15892887. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1168889/.
  124. ^ Nawrocki EP, Eddy SR (2007). "Query-dependent banding (QDB) for faster RNA similarity searches.". PLoS Comput Biol 3 (3): e56. Bibcode 2007PLSCB...3...56N. doi:10.1371/journal.pcbi.0030056. PMC 1847999. PMID 17397253. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1847999/.
  125. ^ Eddy SR (2002). "A memory-efficient dynamic programming algorithm for optimal alignment of a sequence to an RNA secondary structure.". BMC Bioinformatics 3: 18. doi:10.1186/1471-2105-3-18. PMC 119854. PMID 12095421. //www.ncbi.nlm.nih.gov/pmc/articles/P MC119854/.
  126. ^ Eddy SR, Durbin R (1994). "RNA sequence analysis using covariance models.". Nucleic Acids Res 22 (11): 2079–88. doi:10.1093/nar/22.11.2079. PMC 308124. PMID 8029015. //www.ncbi.nlm.nih.gov/pmc/articles/P MC308124/.
  127. ^ Sato K, Sakakibara Y (2005). "RNA secondary structural alignment with conditional random fields.". Bioinformatics. 21 Suppl 2 (suppl_2): ii237–42. doi:10.1093/bioinformatics/bti1139. PMID 16204111.
  128. ^ Weinberg Z, Ruzzo WL (2004). "Exploiting conserved structure for faster annotation of non-coding RNAs without loss of accuracy.". Bioinformatics. 20 Suppl 1 (suppl_1): i334–41. doi:10.1093/bioinformatics/bth925. PMID 15262817.
  129. ^ Weinberg Z, Ruzzo WL (2006). "Sequence-based heuristics for faster annotation of non-coding RNA families.". Bioinformatics 22 (1): 35–9. doi:10.1093/bioinformatics/bti743. PMID 16267089.
  130. ^ Klein RJ, Eddy SR (2003). "RSEARCH: finding homologs of single structured RNA sequences.". BMC Bioinformatics 4: 44. doi:10.1186/1471-2105-4-44. PMC 239859. PMID 14499004. //www.ncbi.nlm.nih.gov/pmc/articles/P MC239859/.
  131. ^ Meyer F, Kurtz S, Backofen R, Will S, Beckstette M (2011). "Structator: fast index-based search for RNA sequence-structure patterns". BMC Bioinformatics 12: 214. doi:10.1186/1471-2105-12-214. PMC 3154205. PMID 21619640. //www.ncbi.nlm.nih.gov/pmc/articles/P MC3154205/.
  132. ^ Gardner PP, Giegerich R (2004). "A comprehensive comparison of comparative RNA structure prediction approaches". BMC Bioinformatics 5: 140. doi:10.1186/1471-2105-5-140. PMC 526219. PMID 15458580. //www.ncbi.nlm.nih.gov/pmc/articles/P MC526219/.
  133. ^ Gardner PP, Wilm A, Washietl S (2005). "A benchmark of multiple sequence alignment programs upon structural RNAs". Nucleic Acids Res. 33 (8): 2433–9. doi:10.1093/nar/gki541. PMC 1087786. PMID 15860779. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1087786/.
  134. ^ Wilm A, Mainz I, Steger G (2006). "An enhanced RNA alignment benchmark for sequence alignment programs.". Algorithms Mol Biol 1 (1): 19. doi:10.1186/1748-7188-1-19. PMC 1635699. PMID 17062125. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1635699/.
  135. ^ Freyhult EK, Bollback JP, Gardner PP (2007). "Exploring genomic dark matter: a critical assessment of the performance of homology search methods on noncoding RNA". Genome Res. 17 (1): 117–25. doi:10.1101/gr.5890907. PMC 1716261. PMID 17151342. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1716261/.
  136. ^ Seibel PN, Müller T, Dandekar T, Schultz J, Wolf M (2006). "4SALE--a tool for synchronous RNA sequence and secondary structure alignment and editing". BMC Bioinformatics 7: 498. doi:10.1186/1471-2105-7-498. PMC 1637121. PMID 17101042. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1637121/.
  137. ^ Bendana YR, Holmes IH (2008). "Colorstock, SScolor, Rat ́on: RNA Alignment Visualization Tools". Bioinformatics 24 (4): 579–80. doi:10.1093/bioinformatics/btm635. PMID 18218657.
  138. ^ Nicol JW, Helt GA, Blanchard SG Jr, Raja A, Loraine AE (2009). "The Integrated Genome Browser: Free software for distribution and exploration of genome-scale data sets.". Bioinformatics 25 (20): 2730–2731. doi:10.1093/bioinformatics/btp472. PMC 2759552. PMID 19654113. //www.ncbi.nlm.nih.gov/pmc/articles/P MC2759552/.
  139. ^ Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009). "Jalview Version 2--a multiple sequence alignment editor and analysis workbench.". Bioinformatics 25 (9): 1189–91. doi:10.1093/bioinformatics/btp033. PMC 2672624. PMID 19151095. //www.ncbi.nlm.nih.gov/pmc/articles/P MC2672624/.
  140. ^ Clamp M, Cuff J, Searle SM, Barton GJ (2004). "The Jalview Java alignment editor.". Bioinformatics 20 (3): 426–7. doi:10.1093/bioinformatics/btg430. PMID 14960472.
  141. ^ Griffiths-Jones S (2005). "RALEE--RNA ALignment editor in Emacs". Bioinformatics 21 (2): 257–9. doi:10.1093/bioinformatics/bth489. PMID 15377506.
  142. ^ Andersen ES, Lind-Thomsen A, Knudsen B, et al. (2007). "Semiautomated improvement of RNA alignments". RNA 13 (11): 1850–9. doi:10.1261/rna.215407. PMC 2040093. PMID 17804647. //www.ncbi.nlm.nih.gov/pmc/articles/P MC2040093/.
  143. ^ I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994). "Fast Folding and Perbandingan -- RNA Secondary Structures.". Monatshefte f. Chemie 125 (2): 167–188. doi:10.1007/BF00818163.
  144. ^ Byun Y, Han K (2009). "PseudoViewer3: generating planar drawings of large-scale RNA structures with pseudoknots.". Bioinformatics 25 (11): 1435–7. doi:10.1093/bioinformatics/btp252. PMID 19369500.
  145. ^ Byun Y, Han K (2006). "PseudoViewer: web application and web service for visualizing RNA pseudoknots and secondary structures.". Nucleic Acids Res 34 (Web Server issue): W416–22. doi:10.1093/nar/gkl210. PMC 1538805. PMID 16845039. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1538805/.
  146. ^ Han K, Byun Y (2003). "PSEUDOVIEWER2: Visualization of RNA pseudoknots of any type.". Nucleic Acids Res 31 (13): 3432–40. doi:10.1093/nar/gkg539. PMC 168946. PMID 12824341. //www.ncbi.nlm.nih.gov/pmc/articles/P MC168946/.
  147. ^ Han K, Lee Y, Kim W (2002). "PseudoViewer: automatic visualization of RNA pseudoknots.". Bioinformatics. 18 Suppl 1: S321–8. doi:10.1093/bioinformatics/18.suppl_1.S32 1. PMID 12169562.
  148. ^ Kaiser A, Krüger J, Evers DJ (2007). "RNA Movies 2: sequential animation of RNA secondary structures.". Nucleic Acids Res 35 (Web Server issue): W330–4. doi:10.1093/nar/gkm309. PMC 1933240. PMID 17567618. //www.ncbi.nlm.nih.gov/pmc/articles/P MC1933240/.
  149. ^ Evers D, Giegerich R (1999). "RNA movies: visualizing RNA secondary structure spaces.". Bioinformatics 15 (1): 32–7. doi:10.1093/bioinformatics/15.1.32. PMID 10068690.
  150. ^ Martinez HM, Maizel JV, Shapiro BA (2008). "RNA2D3D: a program for generating, viewing, and comparing 3-dimensional models of RNA.". J Biomol Struct Dyn 25 (6): 669–83. PMID 18399701.
  151. ^ Reuter JS, Mathews DH (2010). "RNAstructure: software for RNA secondary structure prediction and analysis.". BMC Bioinformatics 11: 129. doi:10.1186/1471-2105-11-129. PMC 2984261. PMID 20230624. //www.ncbi.nlm.nih.gov/pmc/articles/P MC2984261/.
  152. ^ Yang H, Jossinet F, Leontis N, Chen L, Westbrook J, Berman H, Westhof E (2003). "Tools for the automatic identification and classification of RNA base pairs.". Nucleic Acids Res 31 (13): 3450–60. doi:10.1093/nar/gkg529. PMC 168936. PMID 12824344. //www.ncbi.nlm.nih.gov/pmc/articles/P MC168936/.
  153. ^ Menzel P, Seemann SE, Gorodkin J (2012). "RILogo: visualizing RNA-RNA interactions.". Bioinformatics 28 (19): 2523–6. doi:10.1093/bioinformatics/bts461. PMID 22826541.
  154. ^ Darty K, Denise A, Ponty Y (2009). "VARNA: Interactive drawing and editing of the RNA secondary structure.". Bioinformatics 25 (15): 1974–5. doi:10.1093/bioinformatics/btp250. PMC 2712331. PMID 19398448. //www.ncbi.nlm.nih.gov/pmc/articles/P MC2712331/.
(Sebelumnya) List of RISC OS bundled applic ...List of RNA-Seq bioinformatics ... (Berikutnya)