Komputer    
   
Daftar Isi
(Sebelumnya) Relational database management ...Relational model (Berikutnya)

Relational database

A relational database is a collection of data items organized as a set of formally described tables from which data can be accessed easily. A relational database is created using the relational model. The software used in a relational database is called a relational database management system (RDBMS). A relational database is the predominant choice in storing data, over other models like the hierarchical database model or the network model. It consists of n number tables and each table has its own primary key.

The relational database was first defined in June 1970 by Edgar Codd, of IBM's San Jose Research Laboratory.[1] Codd's view of what qualifies as an RDBMS is summarized in Codd's 12 rules.

Contents

Terminology

Relational database terminology.

Relational database theory uses a set of mathematical terms, which are roughly equivalent to SQL database terminology. The table below summarizes some of the most important relational database terms and their SQL database equivalents. It was first introduced in 1970 following the work of E.F.Codd.

Relational termSQL equivalent
relation, base relvartable
derived relvarview, query result, result set
tuplerow
attribute (name)column name
relation scheme, set of attributesset of column names
attribute valuecolumn (data)

Relations or Tables

A relation is defined as a set of tuples that have the same attributes. A tuple usually represents an object and information about that object. Objects are typically physical objects or concepts. A relation is usually described as a table, which is organized into rows and columns. All the data referenced by an attribute are in the same domain and conform to the same constraints. The relational model specifies that the tuples of a relation have no specific order and that the tuples, in turn, impose no order on the attributes. Applications access data by specifying queries, which use operations such as select to identify tuples, project to identify attributes, and join to combine relations. Relations can be modified using the insert, delete, and update operators. New tuples can supply explicit values or be derived from a query. Similarly, queries identify tuples for updating or deleting. Tuples by definition are unique. If the tuple contains a candidate or primary key then obviously it is unique, however, a primary key need not be defined for a row or record to be a tuple. The definition of a tuple requires that it be unique. The definition does not require a Primary Key to be defined. The attributes of a tuple may be referred to as a super key.

Base and derived relations

In a relational database, all data are stored and accessed via relations. Relations that store data are called "base relations", and in implementations are called "tables". Other relations do not store data, but are computed by applying relational operations to other relations. These relations are sometimes called "derived relations". In implementations these are called "views" or "queries". Derived relations are convenient in that they act as a single relation, even though they may grab information from several relations. Also, derived relations can be used as an abstraction layer.

Domain

A domain describes the set of possible values for a given attribute, and can be considered a constraint on the value of the attribute. Mathematically, attaching a domain to an attribute means that any value for the attribute must be an element of the specified set. The character data value 'ABC', for instance, is not in the integer domain. The integer value 123 satisfies the domain constraint.

Constraints

Constraints make it possible to further restrict the domain of an attribute. For instance, a constraint can restrict a given integer attribute to values between 1 and 10. Constraints provide one method of implementing business rules in the database. SQL implements constraint functionality in the form of check constraints. Constraints restrict the data that can be stored in relations. These are usually defined using expressions that result in a boolean value, indicating whether or not the data satisfies the constraint. Constraints can apply to single attributes, to a tuple (restricting combinations of attributes) or to an entire relation. Since every attribute has an associated domain, there are constraints (domain constraints). The two principal rules for the relational model are known as entity integrity and referential integrity.

Primary keys

A primary key uniquely specifies a tuple within a table. In order for an attribute to be a good primary key it must not repeat. While natural attributes (attributes used to describe the data being entered) are sometimes good primary keys, surrogate keys are often used instead. A surrogate key is an artificial attribute assigned to an object which uniquely identifies it (for instance, in a table of information about students at a school they might all be assigned a student ID in order to differentiate them). The surrogate key has no intrinsic (inherent) meaning, but rather is useful through its ability to uniquely identify a tuple. Another common occurrence, especially in regards to N:M cardinality is the composite key. A composite key is a key made up of two or more attributes within a table that (together) uniquely identify a record. (For example, in a database relating students, teachers, and classes. Classes could be uniquely identified by a composite key of their room number and time slot, since no other class could have exactly the same combination of attributes. In fact, use of a composite key such as this can be a form of data verification, albeit a weak one.)

Foreign key

A foreign key is a field in a relational table that matches the primary key column of another table. The foreign key can be used to cross-reference tables. Foreign keys need not have unique values in the referencing relation. Foreign keys effectively use the values of attributes in the referenced relation to restrict the domain of one or more attributes in the referencing relation. A foreign key could be described formally as: "For all tuples in the referencing relation projected over the referencing attributes, there must exist a tuple in the referenced relation projected over those same attributes such that the values in each of the referencing attributes match the corresponding values in the referenced attributes."

Stored procedures

A stored procedure is executable code that is associated with, and generally stored in, the database. Stored procedures usually collect and customize common operations, like inserting a tuple into a relation, gathering statistical information about usage patterns, or encapsulating complex business logic and calculations. Frequently they are used as an application programming interface (API) for security or simplicity. Implementations of stored procedures on SQL RDBMSs often allow developers to take advantage of procedural extensions (often vendor-specific) to the standard declarative SQL syntax. Stored procedures are not part of the relational database model, but all commercial implementations include them.

Index

An index is one way of providing quicker access to data. Indices can be created on any combination of attributes on a relation. Queries that filter using those attributes can find matching tuples randomly using the index, without having to check each tuple in turn. This is analogous to using the index of a book to go directly to the page on which the information you are looking for is found, so that you do not have to read the entire book to find what you are looking for. Relational databases typically supply multiple indexing techniques, each of which is optimal for some combination of data distribution, relation size, and typical access pattern. Indices are usually implemented via B+ trees, R-trees, and bitmaps. Indices are usually not considered part of the database, as they are considered an implementation detail, though indices are usually maintained by the same group that maintains the other parts of the database. It should be noted that use of efficient indexes on both primary and foreign keys can dramatically improve query performance. This is because B-tree indexes result in query times proportional to log(n) where N is the number of rows in a table and hash indexes result in constant time queries (no size dependency so long as the relevant part of the index fits into memory).

Relational operations

Queries made against the relational database, and the derived relvars in the database are expressed in a relational calculus or a relational algebra. In his original relational algebra, Codd introduced eight relational operators in two groups of four operators each. The first four operators were based on the traditional mathematical set operations:

  • The union operator combines the tuples of two relations and removes all duplicate tuples from the result. The relational union operator is equivalent to the SQL UNION operator.
  • The intersection operator produces the set of tuples that two relations share in common. Intersection is implemented in SQL in the form of the INTERSECT operator.
  • The difference operator acts on two relations and produces the set of tuples from the first relation that do not exist in the second relation. Difference is implemented in SQL in the form of the EXCEPT or MINUS operator.
  • The cartesian product of two relations is a join that is not restricted by any criteria, resulting in every tuple of the first relation being matched with every tuple of the second relation. The cartesian product is implemented in SQL as the CROSS JOIN operator.

The remaining operators proposed by Codd involve special operations specific to relational databases:

  • The selection, or restriction, operation retrieves tuples from a relation, limiting the results to only those that meet a specific criteria, i.e. a subset in terms of set theory. The SQL equivalent of selection is the SELECT query statement with a WHERE clause.
  • The projection operation extracts only the specified attributes from a tuple or set of tuples.
  • The join operation defined for relational databases is often referred to as a natural join. In this type of join, two relations are connected by their common attributes. SQL's approximation of a natural join is the INNER JOIN operator.
  • The relational division operation is a slightly more complex operation, which involves essentially using the tuples of one relation (the dividend) to partition a second relation (the divisor). The relational division operator is effectively the opposite of the cartesian product operator (hence the name).

Other operators have been introduced or proposed since Codd's introduction of the original eight including relational comparison operators and extensions that offer support for nesting and hierarchical data, among others.

Normalization

Normalization was first proposed by Codd as an integral part of the relational model. It encompasses a set of procedures designed to eliminate nonsimple domains (non-atomic values) and the redundancy (duplication) of data, which in turn prevents data manipulation anomalies and loss of data integrity. The most common forms of normalization applied to databases are called the normal forms.

References

  1. ^ Codd, E.F. (1970). "A Relational Model of Data for Large Shared Data Banks". Communications of the ACM 13 (6): 377–387. doi:10.1145/362384.362685. 
(Sebelumnya) Relational database management ...Relational model (Berikutnya)