Integrasi Komputer    
   
Daftar Isi
(Sebelumnya) DisqusDistributed Checksum Clearinghouse (Berikutnya)

Distance (graph theory)

In the mathematical field of graph theory, the distance between two vertices in a graph is the number of edges in a shortest path connecting them. This is also known as the geodesic distance [1] because it is the length of the graph geodesic between those two vertices.[2] If there is no path connecting the two vertices, i.e., if they belong to different connected components, then conventionally the distance is defined as infinite.

Contents

Related concepts

A metric space defined over a set of points in terms of distances in a graph defined over the set is called a graph metric. The vertex set (of an undirected graph) and the distance function form a metric space, if and only if the graph is connected.

The eccentricity \epsilon(v) of a vertex v is the greatest geodesic distance between v and any other vertex. It can be thought of as how far a node is from the node most distant from it in the graph.

The radius rof a graph is the minimum eccentricity of any vertex or, in symbols, r = \min_{v \in V} \epsilon(v).

The diameter d of a graph is the maximum eccentricity of any vertex in the graph. That is, d it is the greatest distance between any pair of vertices or, alternatively, d = \max_{v \in V}\epsilon(v). To find the diameter of a graph, first find the shortest path between each pair of vertices. The greatest length of any of these paths is the diameter of the graph.

A central vertex in a graph of radius r is one whose eccentricity is r—that is, a vertex that achieves the radius or, equivalently, a vertex v such that \epsilon(v) = r.

A peripheral vertex in a graph of diameter d is one that is distance d from some other vertex—that is, a vertex that achieves the diameter. Formally, v is peripheral if \epsilon(v) = d.

A pseudo-peripheral vertex v has the property that for any vertex u, if v is as far away from u as possible, then u is as far away from v as possible. Formally, a vertex u is pseudo-peripheral, if for each vertex v with d(u,v) = \epsilon(u) holds \epsilon(u)=\epsilon(v).

The partition of a graphs vertices into subsets by their distances from a given starting vertex is called the level structure of the graph.

Algorithm for finding pseudo-peripheral vertices

Often peripheral sparse matrix algorithms need a starting vertex with a high eccentricity. A peripheral vertex would be perfect, but is often hard to calculate. In most circumstances a pseudo-peripheral vertex can be used. A pseudo-peripheral vertex can easily be found with the following algorithm:

  1. Choose a vertex u.
  2. Among all the vertices that are as far from u as possible, let v be one with minimal degree.
  3. If \epsilon(v) > \epsilon(u) then set u=v and repeat with step 2, else v is a pseudo-peripheral vertex.

See also

Notes

  1. ^ Bouttier, Jérémie; Di Francesco,P. ,Guitter, E. (July 2003). "Geodesic distance in planar graphs". Nuclear Physics B 663 (3): 535–567. doi:10.1016/S0550-3213(03)00355-9. Retrieved 2008-04-23. "By distance we mean here geodesic distance along the graph, namely the length of any shortest path between say two given faces" 
  2. ^ Weisstein, Eric W.. "Graph Geodesic". MathWorld--A Wolfram Web Resource. Wolfram Research. Retrieved 2008-04-23. "The length of the graph geodesic between these points d(u,v) is called the graph distance between u and v" 
(Sebelumnya) DisqusDistributed Checksum Clearinghouse (Berikutnya)