Komputer Sains    
   
Daftar Isi
(Sebelumnya) Software design patternSoftware development effort es ... (Berikutnya)

Software design

This article is about the activity between requirements and programming. For the broader meaning, see software development.

Software development process
Coding Shots Annual Plan high res-5.jpg
Activities and steps
Methodologies
Supporting disciplines
Tools

Software design is the process by which an agent creates a specification of a software artifact, intended to accomplish goals, using a set of primitive components and subject to constraints.[1] Software design may refer to either "all the activities involved in conceptualizing, framing, implementing, commissioning, and ultimately modifying complex systems" or "the activity following requirements specification and before programming, as ... [in] a stylized software engineering process." [2]

Software design usually involves problem solving and planning a software solution. This includes both low-level component and algorithm design and high-level, architecture design.

Contents

Overview

Software design is the process of implementing software solutions to one or more set of problems. One of the important part of the software design is the software requirements analysis (SRA). It is a part of the software development process that lists specifications used in software engineering. If the software is "semiautomated" or user centered, software design may involve user experience design yielding a story board to help determine those specifications. If the software is completely automated (meaning no user or user interface), a software design may be as simple as a flow chart or text describing a planned sequence of events. There are also semi-standard methods like Unified Modeling Language and Fundamental modeling concepts. In either case, some documentation of the plan is usually the product of the design. Furthermore, a software design may be platform-independent or platform-specific, depending on the availability of the technology used for the design.

Software design can be considered as creating a solution to a problem in hand with available capabilities. The main difference between Software analysis and design is that the output of a software analysis consist of smaller problems to solve. Also, the analysis should not be very different even if it is designed by different team members or groups. The design focuses on the capabilities, and there can be multiple designs for the same problem depending on the environment that solution will be hosted. They can be operatins systems, webpages, mobile or even the new cloud computing paradigm. Sometimes the design depends on the environment that it was developed, whether if it is created from with reliable frameworks or implemeted with suitable design patterns).

When designing software, two important factors to consider are its security and usability...

Software design topics

Design concepts

The design concepts provide the software designer with a foundation from which more sophisticated methods can be applied. A set of fundamental design concepts has evolved. They are:

  1. Abstraction - Abstraction is the process or result of generalization by reducing the information content of a concept or an observable phenomenon, typically in order to retain only information which is relevant for a particular purpose.
  2. Refinement - It is the process of elaboration. A hierarchy is developed by decomposing a macroscopic statement of function in a stepwise fashion until programming language statements are reached. In each step, one or several instructions of a given program are decomposed into more detailed instructions. Abstraction and Refinement are complementary concepts.
  3. Modularity - Software architecture is divided into components called modules.
  4. Software Architecture - It refers to the overall structure of the software and the ways in which that structure provides conceptual integrity for a system. A good software architecture will yield a good return on investment with respect to the desired outcome of the project, e.g. in terms of performance, quality, schedule and cost.
  5. Control Hierarchy - A program structure that represents the organization of a program component and implies a hierarchy of control.
  6. Structural Partitioning - The program structure can be divided both horizontally and vertically. Horizontal partitions define separate branches of modular hierarchy for each major program function. Vertical partitioning suggests that control and work should be distributed top down in the program structure.
  7. Data Structure - It is a representation of the logical relationship among individual elements of data.
  8. Software Procedure - It focuses on the processing of each modules individually
  9. Information Hiding - Modules should be specified and designed so that information contained within a module is inaccessible to other modules that have no need for such information

Design considerations

There are many aspects to consider in the design of a piece of software. The importance of each should reflect the goals the software is trying to achieve. Some of these aspects are:

  • Compatibility - The software is able to operate with other products that are designed for interoperability with another product. For example, a piece of software may be backward-compatible with an older version of itself.
  • Extensibility - New capabilities can be added to the software without major changes to the underlying architecture.
  • Fault-tolerance - The software is resistant to and able to recover from component failure.
  • Maintainability - A measure of how easily bug fixes or functional modifications can be accomplished. High maintainability can be the product of modularity and extensibility.
  • Modularity - the resulting software comprises well defined, independent components. That leads to better maintainability. The components could be then implemented and tested in isolation before being integrated to form a desired software system. This allows division of work in a software development project.
  • Reliability - The software is able to perform a required function under stated conditions for a specified period of time.
  • Reusability - the software is able to add further features and modification with slight or no modification.
  • Robustness - The software is able to operate under stress or tolerate unpredictable or invalid input. For example, it can be designed with a resilience to low memory conditions.
  • Security - The software is able to withstand hostile acts and influences.
  • Usability - The software user interface must be usable for its target user/audience. Default values for the parameters must be chosen so that they are a good choice for the majority of the users.

Modeling language

A modeling language is any artificial language that can be used to express information or knowledge or systems in a structure that is defined by a consistent set of rules. The rules are used for interpretation of the meaning of components in the structure. A modeling language can be graphical or textual. Examples of graphical modeling languages for software design are:

  • Business Process Modeling Notation (BPMN) is an example of a Process Modeling language.
  • EXPRESS and EXPRESS-G (ISO 10303-11) is an international standard general-purpose data modeling language.
  • Extended Enterprise Modeling Language (EEML) is commonly used for business process modeling across a number of layers.
  • Flowchart is a schematic representation of an algorithm or a stepwise process,
  • Fundamental Modeling Concepts (FMC) modeling language for software-intensive systems.
  • IDEF is a family of modeling languages, the most notable of which include IDEF0 for functional modeling, IDEF1X for information modeling, and IDEF5 for modeling ontologies.
  • Jackson Structured Programming (JSP) is a method for structured programming based on correspondences between data stream structure and program structure
  • LePUS3 is an object-oriented visual Design Description Language and a formal specification language that is suitable primarily for modelling large object-oriented (Java, C++, C#) programs and design patterns.
  • Unified Modeling Language (UML) is a general modeling language to describe software both structurally and behaviorally. It has a graphical notation and allows for extension with a Profile (UML).
  • Alloy (specification language) is a general purpose specification language for expressing complex structural constraints and behavior in a software system. It provides a concise language based on first-order relational logic.
  • Systems Modeling Language (SysML) is a new general-purpose modeling language for systems engineering.

Design patterns

A software designer or architect may identify a design problem which has been solved by others before. A template or pattern describing a solution to a common problem is known as a design pattern. The reuse of such patterns can speed up the software development process, having been tested and proven in the past.

Usage

Software design documentation may be reviewed or presented to allow constraints, specifications and even requirements to be adjusted prior to programming. Redesign may occur after review of a programmed simulation or prototype. It is possible to design software in the process of programming, without a plan or requirement analysis,[3] but for more complex projects this would not be considered a professional approach. A separate design prior to programming allows for multidisciplinary designers and Subject Matter Experts (SMEs) to collaborate with highly skilled programmers for software that is both useful and technically sound.

See also

  • Aspect-oriented software development
  • Bachelor of Science in Information Technology
  • Design rationale
  • Interaction design
  • Icon design
  • Search-based software engineering
  • Software Design Description (IEEE 1016)
  • Software development
  • User experience
  • User interface design
  • Zero One Infinity

References

  1. ^ Ralph, P. and Wand, Y. (2009). A proposal for a formal definition of the design concept. In Lyytinen, K., Loucopoulos, P., Mylopoulos, J., and Robinson, W., editors, Design Requirements Workshop (LNBIP 14), pp. 103–136. Springer-Verlag, p. 109 doi:10.1007/978-3-540-92966-6_6.
  2. ^ Freeman, Peter; David Hart (2004). "A Science of design for software-intensive systems". Communications of the ACM 47 (8): 20Bad page specification here. 
  3. ^ Ralph, P., and Wand, Y. A Proposal for a Formal Definition of the Design Concept. In, Lyytinen, K., Loucopoulos, P., Mylopoulos, J., and Robinson, W., (eds.), Design Requirements Engineering: A Ten-Year Perspective: Springer-Verlag, 2009, pp. 103-136
(Sebelumnya) Software design patternSoftware development effort es ... (Berikutnya)